Abstract
A detailed numerical analysis of the magnetization reversal processes in multisegmented nanowire arrays was developed. The nanowires have a long aspect ratio and are formed by magnetic and non-magnetic sections alternately arranged in such a way that the array resembles magnetic layers separated by non-magnetic layers. Attention has been focused on the influence of magnetostatic interaction in the magnetic pattern formation of these magnetic nanostructures. Results from a magnetic correlation function among layers show that three different reversal modes can be detected depending on the number and distance between the magnetic segments. As a consequence of the different reversal modes, a non-monotonic behavior of the annihilation field in function of the distance between the layers is evidenced. Thus, these results are important for the production of magnetic devices with multisegmented nanowire arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.