Abstract

Because of their reliance on the flexible endoscope, most current procedures in natural-orifice transluminal endoscopic surgery (NOTES) suffer from the inability to vigorously grasp and move tissue or to retract organs. We aimed to assess the use of internal and external magnets that might allow the vigorous multiaxial traction/countertraction required in more complicated NOTES procedures. Ex vivo and in vivo porcine model. Study components were: (1) Evaluation of force-distance relationship of this magnetic retraction system using a digital tensiometer. (2) Application of this magnetic retraction system to two procedures in the porcine model: (a) Liver retraction during transcolonic cholecystectomy in five nonsurvival pigs. Procedure time was recorded and compared to historical controls. (b) Mesh positioning for implantation into the anterior abdominal wall for ventral hernia repair in three survival pigs. Over a distance of 5 cm to 0.25 cm, the magnetic force of our system increased from 3 to 90 gramforce (29.42 to 882.60 mN.) In vivo, the magnet system provided robust liver retraction, shortening the procedure time of NOTES cholecystectomy from a historical mean of 68 minutes (range 42 - 90 minutes; n = 5) to 49.6 minutes (range 33 - 61 minutes; n = 3). The magnetic system also greatly enhanced mesh positioning and stability, and these animals survived for 2 weeks without complications. Our basic system provided critical liver retraction during NOTES cholecystectomy and was also instrumental in moving and stabilizing mesh for implantation during NOTES ventral hernia repair. Magnets can potentially provide the vigorous traction and countertraction required to advance NOTES procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.