Abstract

Discrete energy levels of ultrasmall metallic grains are extracted in single-electron-tunneling-spectroscopy experiments. We study the response of these energy levels to an external magnetic field in the presence of both spin-orbit scattering and pairing correlations. In particular, we investigate $g$-factors and level curvatures that parametrize, respectively, the linear and quadratic terms in the magnetic-field dependence of the many-particle energy levels of the grain. Both of these quantities exhibit level-to-level fluctuations in the presence of spin-orbit scattering. We show that the distribution of $g$-factors is not affected by the pairing interaction and that the distribution of level curvatures is sensitive to pairing correlations even in the smallest grains in which the pairing gap is smaller than the mean single-particle level spacing. We propose the level curvature in a magnetic field as a tool to probe pairing correlations in tunneling spectroscopy experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.