Abstract

Changes in shoulder motion patterns are relevant in various shoulder diseases, but no in vivo information exists about the relative positions in vivo of the shoulder girdle bones and the supraspinatus muscle in three-dimensional space. Thus, the objective of this study was to perform a motion analysis of these structures during passive arm elevation using open magnetic resonance imaging and three-dimensional image processing. Fourteen volunteers were examined in five positions of abduction (30 degrees-150 degrees) with an open magnetic resonance system. After segmentation and three-dimensional reconstruction, the axis of the supraspinatus, humerus, clavicle, and the plane of the glenoid were determined, and the relative movements were calculated. The ratio for glenohumeral to scapulothoracic motion was 1.5:1 at 60 degrees and 2.4:1 at 120 degrees abduction. At 30 degrees, the axis of the supraspinatus was nearly horizontal, and during abduction a continuous elevation (+123 degrees at 150 degrees abduction) was measured. In the transverse plane, the angle between the supraspinatus and the clavicle axes became larger during abduction because of an increasing retroversion of the clavicle. The study shows specific three-dimensional motion patterns for each bone of the shoulder girdle and the supraspinatus muscle during passive elevation. The technique and results can be used for future studies in patients with pathologic changes of shoulder girdle motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.