Abstract
This study focuses on the measurement accuracy of Magnetic Resonance Velocimetry (MRV) in high-speed turbulent flows. One of the most prominent errors in MRV is the displacement error, which describes the misregistration of spatial coordinates and velocity components in moving fluids. Displacement errors are particularly critical for experiments with high flow velocity and high spatial resolution. The degree of displacement error also depends on the sequence structure of the MRV technique. In this study, two MRV sequence types are examined regarding their measurement capabilities in high-speed turbulent flows: a conventional MRV sequence based on the popular “4D FLOW” technique, and a newly developed sequence, named “SYNC SPI”. Compared to conventional MRV, SYNC SPI is designed for high measurement accuracy, and not for imaging speed, which limits its application to statistically stationary flows. Both sequence types are evaluated in a flow experiment with a converging–diverging nozzle. Time-averaged results are presented for velocities up to 12 m/s at the throat. Supported by Particle Imaging Velocimetry, it is shown that SYNC SPI is capable of acquiring accurate velocity data in these highly turbulent flows. In contrast, the data from the conventional MRV sequence exhibits substantial displacement errors with a maximum displacement of 21 mm. The long acquisition time is the main disadvantage of the SYNC SPI sequence. Therefore, it is examined if undersampling and non-linear reconstruction, known as Compressed Sensing, can be utilized to make data acquisition more efficient. In the presented measurements, Compressed Sensing is successfully applied to shorten the acquisition time by up to 70% with almost no reduction in measurement accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.