Abstract

Computed tomography (CT) is better than routine magnetic resonance imaging (MRI) in detecting intracranial calcification. This study aimed to assess the value of MR susceptibility weighted imaging (SWI) in the detection and differentiation of intracranial calcification and hemorrhage. Enrolled in this study were 35 patients including 13 cases of calcification demonstrated by CT and 22 cases of intracerebral hemorrhage. MR sequences used in all the subjects included axial T1WI, T2WI and SWI. The phase shift (PS) of calcification and hemorrhage on SWI was calculated and their signal features on corrected phase images were compared. The sensitivity of T1WI, T2WI and SWI in detecting intracranial calcification and hemorrhage was analyzed statistically. The detection rate of SWI for cranial calcification was 98.2%, significantly higher than that of T1WI and T2WI. It was not significantly different from that of CT (P > 0.05). There were 49 hemorrhagic lesions at different stages detected on SWI, 30 on T2WI and 18 on T1WI. The average PS of calcification and hemorrhage was +0.734 +/- 0.073 and -0.112 +/- 0.032 respectively (P < 0.05). The PS of calcification was positive and presented as a high signal or the mixed signal dominated by a high signal on the corrected phase images, whereas the PS of hemorrhage was negative and presented as a low signal or the mixed signal dominated by a low signal. SWI can accurately demonstrate intracranial calcification, not dependant on CT. Being more sensitive than routine MRI in detecting micro-hemorrhage, SWI may play an important role in differentiating cerebral diseases associated with calcification or hemorrhage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.