Abstract

Diamonds produced using chemical vapor deposition (CVD) have found many applications in various fields of science and technology. Many applications involve polycrystalline CVD diamond films of micron thicknesses. However, a variety of optical, thermal, mechanical, and radiation sensing applications require more bulky CVD diamond samples. We report the results of a magnetic resonance and structural study of a thick, sizable polycrystalline CVD diamond disc, both as-prepared and treated with e-beam irradiation/high-temperature annealing, as well as gamma irradiation. The combination of various magnetic resonance techniques reveals and enables the attribution of a plentiful collection of paramagnetic defects of doublet and triplet spin origin. Analysis of spectra, electron, and nuclear spin relaxation, as well as nuclear spin diffusion, supports the conclusion of significant macro- and micro-inhomogeneities in the distribution of nitrogen-related defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call