Abstract

Continuous arterial spin-labeled perfusion MRI (CASL-PI) uses electromagnetically labeled arterial blood water as a diffusible tracer to noninvasively measure cerebral blood flow (CBF). We hypothesized that CASL-PI could detect perfusion deficits and perfusion/diffusion mismatches and predict outcome in acute ischemic stroke. We studied 15 patients with acute ischemic stroke within 24 hours of symptom onset. With the use of a 6-minute imaging protocol, CASL-PI was measured at 1.5 T in 8-mm contiguous supratentorial slices with a 3.75-mm in-plane resolution. Diffusion-weighted images were also obtained. Visual inspection for perfusion deficits, perfusion/diffusion mismatches, and effects of delayed arterial transit was performed. CBF in predetermined vascular territories was quantified by transformation into Talairach space. Regional CBF values were correlated with National Institutes of Health Stroke Scale (NIHSS) score on admission and Rankin Scale (RS) score at 30 days. Interpretable CASL-PI images were obtained in all patients. Perfusion deficits were consistent with symptoms and/or diffusion-weighted imaging abnormalities. Eleven patients had hypoperfusion, 3 had normal perfusion, and 1 had relative hyperperfusion. Perfusion/diffusion mismatches were present in 8 patients. Delayed arterial transit effect was present in 7 patients; serial imaging in 2 of them showed that the delayed arterial transit area did not succumb to infarction. CBF in the affected hemisphere correlated with NIHSS and RS scores (P=0.037 and P=0.003, Spearman rank correlation). The interhemispheric percent difference in middle cerebral artery CBF correlated with NIHSS and RS scores (P=0.007 and P=0.0002, respectively). CASL-PI provides rapid noninvasive multislice imaging in acute ischemic stroke. It depicts perfusion deficits and perfusion/diffusion mismatches and quantifies regional CBF. CASL-PI CBF asymmetries correlate with severity and outcome. Delayed arterial transit effects may indicate collateral flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.