Abstract

Magnetic resonance microscopy (MRM) may be very useful in the ex vivo study of osteoporosis as non destructive technique able to provide three dimensional information of the bone architecture. However, the trabecular width appears larger in conventional MR images, as the susceptibility effect at the bone-marrow interface causes signal dephasing. Such an effect can be minimized if the echo-time (TE) or voxel size are reduced. The purpose of our research was the development of new MRM techniques that have a potential role in the characterization of trabecular bone architecture. In this study we describe the use of short-TE projection reconstruction MRM for the study of normal and osteoporotic bone explants. This method promises to be more accurate than conventional MRM in the analysis of trabecular bone. In vivo projection reconstruction MR imaging could be applied to evaluate bone architecture and bone quality evolution after space flight exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call