Abstract

Increased non-heme iron levels in the brain of Alzheimer's disease (AD) patients are higher than the levels observed in age matched normal subjects. Iron level in structures that are highly relevant for AD, such as the basal forebrain, can be detected post mortem with histochemistry. Because of the small size of these structures, in vivo MR detection is very difficult at conventional field magnets (1.5 and 4 T). In this study, we observed iron deposits with histochemistry and MR microscopy at 11.7 T in the brain of the mouse lemur, a strepsirhine primate which is the only known animal model of aging presenting both senile plaques and neurofibrillary degeneration. We also examined a related species, the dwarf lemur. Iron distribution in aged animals (8 to 15 years old) agrees with previous findings in humans. In addition, the high iron levels of the globus pallidus is paralleled by a comparable contrast in basal forebrain cholinergic structures. Because of the enhancement of iron-dependent contrast with increasing field strength, microscopic magnetic resonance imaging of the mouse lemur appears to be an ideal model system for studying in vivo iron changes in the basal forebrain in relation to aging and neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.