Abstract

AbstractMagnetic resonance imaging (MRI) reconstruction model based on total variation (TV) regularization can deal with problems such as incomplete reconstruction, blurred boundary, and residual noise. In this article, a non‐convex isotropic TV regularization reconstruction model is proposed to overcome the drawback. Moreau envelope and minmax‐concave penalty are firstly used to construct the non‐convex regularization of L2 norm, then it is applied into the TV regularization to construct the sparse reconstruction model. The proposed model can extract the edge contour of the target effectively since it can avoid the underestimation of larger nonzero elements in convex regularization. In addition, the global convexity of the cost function can be guaranteed under certain conditions. Then, an efficient algorithm such as alternating direction method of multipliers is proposed to solve the new cost function. Experimental results show that, compared with several typical image reconstruction methods, the proposed model performs better. Both the relative error and the peak signal‐to‐noise ratio are significantly improved, and the reconstructed images also show better visual effects. The competitive experimental results indicate that the proposed approach is not limited to MRI reconstruction, but it is general enough to be used in other fields with natural images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.