Abstract

Although recent deep energy-based generative models (EBMs) have shown encouraging results in many image-generation tasks, how to take advantage of self-adversarial cogitation in deep EBMs to boost the performance of magnetic resonance imaging (MRI) reconstruction is still desired. With the successful application of deep learning in a wide range of MRI reconstructions, a line of emerging research involves formulating an optimization-based reconstruction method in the space of a generative model. Leveraging this, a novel regularization strategy is introduced in this article that takes advantage of self-adversarial cogitation of the deep energy-based model. More precisely, we advocate alternating learning by a more powerful energy-based model with maximum likelihood estimation to obtain the deep energy-based information, represented as a prior image. Simultaneously, implicit inference with Langevin dynamics is a unique property of reconstruction. In contrast to other generative models for reconstruction, the proposed method utilizes deep energy-based information as the image prior in reconstruction to improve the quality of image. Experimental results imply the proposed technique can obtain remarkable performance in terms of high reconstruction accuracy that is competitive with state-of-the-art methods, and which does not suffer from mode collapse. Algorithmically, an iterative approach is presented to strengthen EBM training with the gradient of energy network. The robustness and reproducibility of the algorithm were also experimentally validated. More importantly, the proposed reconstruction framework can be generalized for most MRI reconstruction scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.