Abstract

Background and purposeMagnetic resonance imaging (MRI) scans are highly sensitive to acquisition and reconstruction parameters which affect feature stability and model generalizability in radiomic research. This work aims to investigate the effect of image pre-processing and harmonization methods on the stability of brain MRI radiomic features and the prediction performance of radiomic models in patients with brain metastases (BMs). Materials and methodsTwo T1 contrast enhanced brain MRI data-sets were used in this study. The first contained 25 BMs patients with scans at two different time points and was used for features stability analysis. The effect of gray level discretization (GLD), intensity normalization (Z-score, Nyul, WhiteStripe, and in house-developed method named N-Peaks), and ComBat harmonization on features stability was investigated and features with intraclass correlation coefficient >0.8 were considered as stable. The second data-set containing 64 BMs patients was used for a classification task to investigate the informativeness of stable features and the effects of harmonization methods on radiomic model performance. ResultsApplying fixed bin number (FBN) GLD, resulted in higher number of stable features compare to fixed bin size (FBS) discretization (10 ± 5.5 % higher). Applying harmonization in feature domain was able to improve the stability for non-normalized and normalized images with Z-score and WhiteStripe methods. For the classification task, keeping the stable features resulted in good performance only for normalized images with N-Peaks along with FBS discretization. ConclusionsTo develop a robust MRI based radiomic model we recommend using an intensity normalization method based on a reference tissue (e.g N-Peaks) and then using FBS discretization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call