Abstract

A prospective study. To assess fat-water-like tissue changes on the 1st sacral vertebra using novel magnetic resonance imaging (MRI) phantombased F- and W-scores and evaluate their diagnostic performances in osteoporosis detection. Using an uncommonly advanced MRI technique, previous studies have found that fat-water changes were consistent with osteoporosis. The role of routine MRI sequences can be extended in this regard. The S1 vertebra is considered a crucial anatomical site in spine surgeries because it seldom suffers from fractures. Thus, S1 could indicate osteoporotic fat-water changes. Forty-two female volunteers (aged 62.3±6.3 years) underwent spine examination with both MRI (including a phantom) and dual-energy X-ray absorptiometry (DXA) following ethical approval. MRI phantom-based F- and W-scoreS1 were defined by normalizing S1 vertebral signal intensities (SIs) by coconut oil and water SIs of the phantom on T1- and T2-weighted imaging, respectively. Using receiver operating characteristic analysis, the diagnostic performances of the new scores for evaluating osteoporosis and vertebral fractures were investigated against standard areal bone mineral density measured with DXA (DXA-aBMD). The F-scoreS1 and W-scoreS1 were greater (4.11 and 2.43, respectively) in patients with osteoporosis than those without osteoporosis (3.25 and 1.92, respectively) and achieved areas under the curve (AUCs) of 0.82 and 0.76 (p<0.05), respectively, for osteoporosis detection. Similarly, the mean F-scoreS1 and W-scoreS1 were higher (4.11 and 2.63, respectively) in patients with vertebral fractures than in those without fractures (3.30 and 1.82, respectively) and had greater AUCs (0.90 for W-scoreS1 and 0.74 for F-scoreS1) than DXA-aBMD (AUC, 0.26; p<0.03). In addition, the F- and W-scoreS1 demonstrated a strong correlation (r=0.65, p<0.001). The new S1 vertebral-based MRI scores were developed to detect osteoporotic changes and demonstrated improvements over DXA-aBMD in differentiating patients with vertebral fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.