Abstract
We describe a phase contrast based MRI technique with high sensitivity to cyclic displacement that is capable of quantitatively imaging acoustic strain waves in tissue-like materials. A formalism for considering gradient waveforms as basis functions to measure arbitrary cyclic motion waveforms is introduced. Experiments with tissue-like agarose gel phantoms show that it is possible to measure small cyclic displacements at a submicron level by an appropriate choice of the applied gradient basis function and to use this capability to observe the spatial and temporal pattern of displacements caused by acoustic strain waves. The propagation characteristics of strain waves are determined by the mechanical properties of the media. It is therefore possible to use this technique to noninvasively estimate material properties such as elastic modulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.