Abstract

The Fe3O4 fluid synthesis by thermal decomposition method carried out in organic solvents with high boiling temperatures disposes a possibility of creating high-quality nanoparticles with uniform particle size and high degree of crystallization. In this paper, Fe3O4 fluid was prepared by thermal decomposition using poly (maleic anhydride-alt-1-octadecene) (PMAO) as a phase transfer ligand. The crystalline structure, morphology and magnetic property of the as-prepared samples were thoroughly characterized. The results demonstrated that the magnetic Fe3O4 nanomaterial was formed in liquid phase with spinel single phase structure, average size of 13-16 nm, and high saturation magnetization (up to 70 emu/g). Iron oxide (Fe3O4) nanoparticles coated with biocompatible poly (maleic anhydride-alt-1-octadecene) (PMAO) were synthesized for use as an MRI (magnetic resonance imaging) contrast agent. The spin-lattice (T1) and the spin-spin (T2) relaxation times of the nuclear spins (hydrogen protons) in aqueous solutions of various concentrations of coated ferrite nanoparticles were determined using a nuclear magnetic resonance (NMR) spectrometer. The MRI image was detected with higher contrast in comparison with that before injecting. By comparing with the MRI images taken in T1 weighted the T2 weighted images are clearer. The MRI images of a rabbit taken by the T2 weighted which shows that our coated ferrite nanoparticles can be used as a T2 MRI contrast agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call