Abstract

Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics.There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the “far-nozzle” region (≫10 diameters of the nozzle). However, traditional methods are limited in their ability to characterize the “near-nozzle” region where the fluid may be inside the nozzle, optically dense, or incompletely atomized.Magnetic Resonance Imaging (MRI) presents potential as a non-invasive technique that is capable of measuring optically inaccessible fluid in a quantitative fashion. In this work, MRI measurements of the spray generated by ceramic flat-fan nozzles were performed. A wide range of flow speeds in the system (0.2 to >25m/s) necessitated short encoding times. A 3D Conical SPRITE and motion-sensitized 3D Conical SPRITE were employed. The signal from water inside the nozzle was well-characterized, both via proton density and velocity measurements. The signal outside the nozzle, in the near-nozzle region, was detectable, corresponding to the expected flat-fan spray pattern up to 3mm away. The results demonstrate the potential of MRI for measuring spray characteristics in areas inaccessible by other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call