Abstract

To evaluate whether dynamic alterations in high-energy phosphate (HEP) occur in postischemic "stunned" myocardium (SM) in canine model and to investigate the correlation between HEP and cardiac function, using cine magnetic resonance imaging (cine-MRI) and phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Dogs (n = 13) underwent cine MRI and 31P-MRS at 60 minutes, 8 days after 10 minutes full left anterior descending occlusion followed by reperfusion. The same MRI/MRS experiments were repeated on 5 reference animals (dogs without ischemic reperfusion) at the same time points to serve as internal reference myocardium (RM). After MR data acquisitions, the SM dogs (n = 3 at 60 minutes; n = 10 at 60 minutes and day 8) and RM dogs (n = 5) were euthanized and myocardial tissues were sampled for histologic study by triphenyltetrazolium chloride staining, hematoxylin and eosin staining, and electron microscopic examination. The myocardial stunning at 60 minutes was confirmed by electron microscopy examinations from the 3 randomly chosen animals with SM. The phosphocreatine (PCr)/β- adenosine triphosphate (ATP) ratio of SM was significantly lower at 60 minutes than that at day 8 (1.07 ± 0.20 vs. 1.97 ± 0.28, P < 0.05). However, no significant difference was found between 60 minutes and day 8 in RM group (1.91 ± 0.14 at 60 minutes vs. 1.89 ± 0.16 at day 8, P > 0.05). At 60 minutes, the PCr/β-ATP ratio has significant difference between SM and RM groups; while at day 8, the ratio shows no significant difference between the 2 groups. The same results were obtained for left ventricle ejection fraction (LVEF). In SM group, LVEF has good correlation with myocardial PCr/β-ATP ratios at 60 minutes (R2 = 0.71, P < 0.05) and at day 8 (R2 = 0.73, P < 0.05), respectively. The HEP alterations were confirmed by 31P-MRS in SM and there is a good correlation between PCr/β-ATP ratio and LVEF for SM at 60 minutes and recovered myocardium at day 8. The combined MRS/MRI method offers the potential to systematically assess the cardiac function, morphology, and metabolism of SM. These MRS/MRI biomarker datasets could be used to dynamically monitor therapeutic efficiency and predict cardiac events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.