Abstract
The aim of study is building new program for processing MRI images using MATLAB and to investigate different breast MRI detection algorithms that inform normal and abnormal scans of MRI. In this research an algorithm is proposed to extract texture feature and inform normal and abnormal scans of MRI. First, the MRI scans are pre- processed by image enhancement, intensity normalization, background segmentation and detection of mirror symmetry of breast. Second, the proposed gray level co- occurrence matrix (GLCM) and gray level run length matrix (GLRLM) methods are used to extract texture features from MRI T2-weighted and STIR images. Finally, these features are classified into normal and abnormal by using long short term memory (LSTM) model. The research will be validated using 326 datasets that downloaded from cancer imaging archive (TCIA). The achieved classification accuracy was 98.80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.