Abstract

ObjectivesHuman papillomavirus- (HPV) positive oropharyngeal squamous cell carcinoma (OPSCC) differs biologically and clinically from HPV-negative OPSCC and has a better prognosis. This study aims to analyze the value of magnetic resonance imaging (MRI)-based radiomics in predicting HPV status in OPSCC and aims to develop a prognostic model in OPSCC including HPV status and MRI-based radiomics. Materials and methodsManual delineation of 249 primary OPSCCs (91 HPV-positive and 159 HPV-negative) on pretreatment native T1-weighted MRIs was performed and used to extract 498 radiomic features per delineation. A logistic regression (LR) and random forest (RF) model were developed using univariate feature selection. Additionally, factor analysis was performed, and the derived factors were combined with clinical data in a predictive model to assess the performance on predicting HPV status. Additionally, factors were combined with clinical parameters in a multivariable survival regression analysis. ResultsBoth feature-based LR and RF models performed with an AUC of 0.79 in prediction of HPV status. Fourteen of the twenty most significant features were similar in both models, mainly concerning tumor sphericity, intensity variation, compactness, and tumor diameter. The model combining clinical data and radiomic factors (AUC = 0.89) outperformed the radiomics-only model in predicting OPSCC HPV status. Overall survival prediction was most accurate using the combination of clinical parameters and radiomic factors (C-index = 0.72). ConclusionPredictive models based on MR-radiomic features were able to predict HPV status with sufficient performance, supporting the role of MRI-based radiomics as potential imaging biomarker. Survival prediction improved by combining clinical features with MRI-based radiomics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call