Abstract

PurposeClinical risk scores are essential for predicting outcomes in stroke patients. The advancements in deep learning (DL) techniques provide opportunities to develop prediction applications using magnetic resonance (MR) images. We aimed to develop an MR-based DL imaging biomarker for predicting outcomes in acute ischemic stroke (AIS) and evaluate its additional benefit to current risk scores. MethodThis study included 3338 AIS patients. We trained a DL model using deep neural network architectures on MR images and radiomics to predict poor functional outcomes at three months post-stroke. The DL model generated a DL score, which served as the DL imaging biomarker. We compared the predictive performance of this biomarker to five risk scores on a holdout test set. Additionally, we assessed whether incorporating the imaging biomarker into the risk scores improved the predictive performance. ResultsThe DL imaging biomarker achieved an area under the receiver operating characteristic curve (AUC) of 0.788. The AUCs of the five studied risk scores were 0.789, 0.793, 0.804, 0.810, and 0.826, respectively. The imaging biomarker's predictive performance was comparable to four of the risk scores but inferior to one (p = 0.038). Adding the imaging biomarker to the risk scores improved the AUCs (p-values) to 0.831 (0.003), 0.825 (0.001), 0.834 (0.003), 0.836 (0.003), and 0.839 (0.177), respectively. The net reclassification improvement and integrated discrimination improvement indices also showed significant improvements (all p < 0.001). ConclusionsUsing DL techniques to create an MR-based imaging biomarker is feasible and enhances the predictive ability of current risk scores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.