Abstract

Quantitative analysis of magnetic resonance (MR) images is a powerful tool for image-guided diagnosis, monitoring, and intervention. The major tasks involve tissue quantification and image segmentation where both the pixel and context images are considered. To extract clinically useful information from images that might be lacking in prior knowledge, we introduce an unsupervised tissue characterization algorithm that is both statistically principled and patient specific. The method uses adaptive standard finite normal mixture and inhomogeneous Markov random field models, whose parameters are estimated using expectation-maximization and relaxation labeling algorithms under information theoretic criteria. We demonstrate the successful applications of the approach with synthetic data sets and then with real MR brain images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call