Abstract

Conventional dictionary matching based MR Fingerprinting (MRF) reconstruction approaches suffer from time-consuming operations that map temporal MRF signals to quantitative tissue parameters. In this paper, we design a 1-D residual convolutional neural network to perform the signature-to-parameter mapping in order to improve inference speed and accuracy. In particular, a 1-D convolutional neural network with shortcuts, a.k.a skip connections, for residual learning is developed using a TensorFlow platform. To avoid the requirement for a large amount of MRF data, the designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. The proposed approach was validated on both synthetic data and phantom data generated from a healthy subject. The reconstruction performance demonstrates a significantly improved speed – only 1.6s for reconstructing a pair of T1/T2 maps of size 128 × 128 – 50× faster than the original dictionary matching based method. The better performance was also confirmed by improved signal to noise ratio (SNR) and reduced root mean square error (RMSE). Furthermore, it is more compact to store a network instead of a large dictionary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.