Abstract

Magnetic Resonance Imaging (MRI) can be used to assess anatomical structure, and its sensitivity to a variety of tissue properties enables superb contrast between tissues as well as the ability to characterize these tissues. However, despite vast potential for quantitative and functional evaluation, MRI is typically used qualitatively, in which the underlying tissue properties are not measured, and thus the brightness of each pixel is not quantitatively meaningful. Positron Emission Tomography (PET) is an inherently quantitative imaging modality that interrogates functional activity within a tissue, probed by a molecule of interest coupled with an appropriate tracer. These modalities can complement one another to provide clinical information regarding both structure and function, but there are still technical and practical hurdles in the way of the integrated use of both modalities. Recent advances in MRI have moved the field in an increasingly quantitative direction, which is complementary to PET, and could also potentially help solve some of the challenges in PET/MR. Magnetic Resonance Fingerprinting (MRF) is a recently described MRI-based technique which can efficiently and simultaneously quantitatively map several tissue properties in a single exam. Here, the basic principles behind the quantitative approach of MRF are laid out, and the potential implications for combined PET/MR are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call