Abstract

Glutathione (GSH) plays a vital role in maintaining biological redox homeostasis. Accordingly, accurate imaging of glutathione in vivo is of great significance. Herein, we propose a magnetic resonance energy transfer (MRET) strategy based on a distance-dependent magnetic exchange coupling effect (MECE), which can realize GSH detection within tumors in vivo by susceptibility weighted imaging (SWI). Fe3O4 nanoparticles (NPs) and CoFe2O4 NPs linked with cystamine (Fe3O4–S–S–CoFe2O4) have been successfully designed as SWI nanoprobes. After the disulfide bonds are broken by excess GSH in the tumor, the increase in the distance between Fe3O4 NPs and CoFe2O4 NPs will induce a decrease of MECE and magnetic susceptibility. As a result, the changes in the SWI signals are used for tumor GSH detection in vivo. Experimental results in vitro and in vivo demonstrate that the Fe3O4–S–S–CoFe2O4 SWI nanoprobe can sensitively detect concentrations of GSH in tumors. Hence, this strategy not only improves the sensitivity of the GSH response in SWI but also provides a powerful basis for the design of other responsive functional MRI nanoprobes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.