Abstract

BackgroundAnti-angiogenic treatment of glioblastoma (GBM) complicates radiologic monitoring. We evaluated magnetic resonance elastography (MRE) as an imaging tool for monitoring the efficacy of anti-VEGF treatment of GBM.MethodsLongitudinal studies were performed in an orthotopic GBM xenograft mouse model. Animals treated with B20 anti-VEGF antibody were compared to untreated controls regarding survival (n = 13), classical MRI-contrasts and biomechanics as quantified via MRE (n = 15). Imaging was performed on a 7 T small animal horizontal bore MRI scanner. MRI and MRE parameters were compared to histopathology.ResultsAnti-VEGF-treated animals survived longer than untreated controls (p = 0.0011) with progressively increased tumor volume in controls (p = 0.0001). MRE parameters viscoelasticity |G*| and phase angle Y significantly decreased in controls (p = 0.02 for |G*| and p = 0.0071 for Y). This indicates that untreated tumors became softer and more elastic than viscous with progression. Tumor volume in treated animals increased more slowly than in controls, indicating efficacy of the therapy, reaching significance only at the last time point (p = 0.02). Viscoelasticity and phase angle Y tended to decrease throughout therapy, similar as for control animals. However, in treated animals, the decrease in phase angle Y was significantly attenuated and reached statistical significance at the last time point (p = 0.04). Histopathologically, control tumors were larger and more heterogeneous than treated tumors. Vasculature was normalized in treated tumors compared with controls, which showed abnormal vasculature and necrosis. In treated tumors, a higher amount of myelin was observed within the tumor area (p = 0.03), likely due to increased tumor invasion. Stiffness of the contralateral hemisphere was influenced by tumor mass effect and edema.ConclusionsAnti-angiogenic GBM treatment prolonged animal survival, slowed tumor growth and softening, but did not prevent progression. MRE detected treatment effects on tumor stiffness; the decrease of viscoelasticity and phase angle in GBM was attenuated in treated animals, which might be explained by normalized vasculature and greater myelin preservation within treated tumors. Thus, further investigation of MRE is warranted to understand the potential for MRE in monitoring treatment in GBM patients by complementing existing MRI techniques.

Highlights

  • Anti-angiogenic treatment of glioblastoma (GBM) complicates radiologic monitoring

  • magnetic resonance elastography (MRE) detected treatment effects on tumor stiffness; the decrease of viscoelasticity and phase angle in GBM was attenuated in treated animals, which might be explained by normalized vasculature and greater myelin preservation within treated tumors

  • Anti-VEGF treatment prolongs animal survival and slows tumor growth To establish whether MRE could be applied to monitor the effects of anti-angiogenic therapy in GBM, we first established an animal model with a robust response to anti-VEGF therapy

Read more

Summary

Introduction

Anti-angiogenic treatment of glioblastoma (GBM) complicates radiologic monitoring. We evaluated magnetic resonance elastography (MRE) as an imaging tool for monitoring the efficacy of anti-VEGF treatment of GBM. Glioblastoma (GBM) is the most common malignant primary brain tumor [1]. It has a very poor prognosis with less than 10% of patients surviving longer than 5 years when treated with the standard of care regimen, which comprises surgical resection followed by radiotherapy and concomitant alkylating chemotherapy with temozolomide [2]. Magnetic resonance imaging (MRI) is an important tool for diagnosis and monitoring of GBM. The current recommendations of the Response Assessment in Neuro-Oncology (RANO) working group include evaluation of both enhancing and non-enhancing tumor components on contrast-enhanced T1- and T2-weighted (T1w, T2w) or fluid-attenuated inversion recovery (FLAIR) MRI sequences [4]. Radiological response assessment is challenging and must be done carefully

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.