Abstract

To demonstrate the feasibility of obtaining liver stiffness measurements with magnetic resonance elastography (MRE) at 3T in normal healthy volunteers using the same technique that has been successfully applied at 1.5 T. The study was approved by the local ethics committee and written informed consent was obtained from all volunteers. Eleven volunteers (mean age 35 ± 9 years) with no history of gastrointestinal, hepatobiliary, or cardiovascular disease were recruited. The magnetic resonance imaging (MRI) protocol included a gradient echo-based MRE sequence using a 60 Hz pneumatic excitation. The MRE images were processed using a local frequency estimation inversion algorithm to provide quantitative stiffness maps. Adequate image quality was assessed subjectively by demonstrating the presence of visible propagating waves within the liver parenchyma underlying the driver location. Liver stiffness values were obtained using manually placed regions of interest (ROI) outlining the liver margins on the gradient echo wave images, which were then mapped onto the corresponding stiffness image. The mean stiffness values from two adjacent sections were recorded. Eleven volunteers underwent MRE. The quality of the MRE images was adequate in all the volunteers. The mean liver stiffness for the group was 2.3 ± 0.38 kPa (ranging from 1.7-2.8 kPa). This preliminary work using MRE at 3T in healthy volunteers demonstrates the feasibility of liver stiffness evaluation at 3T without modification of the approach used at 1.5 T. Adequate image quality and normal MRE values were obtained in all volunteers. The obtained stiffness values were in the range of those reported for healthy volunteers in previous studies at 1.5 T. There was good interobserver reproducibility in the stiffness measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call