Abstract
Photo-oxidation of seven cyclic dipeptides containing methionine, Met, and/or S-methylcysteine, Cys(Me) by electron transfer from the sulfur atom was studied in aqueous solution by time-resolved and field dependent CIDNP (chemically induced dynamic nuclear polarization). Hyperpolarized high resolution NMR spectral patterns of the starting peptides detected immediately after pulsed laser excitation show signals of all protons that are bound to carbons neighboring the sulfur atom, thus proving the involvement of sulfur-centered cation radicals. The magnetic field dependence of CIDNP shows a pronounced maximum that is determined by the g-factors and hyperfine coupling constants of the transient radical species. From simulation of the experimental data obtained for the magnetic field dependences of CIDNP, three types of radical structures were characterized: (1) a linear sulfur-centered cation radical of the methionine (Met) residue (g = 2.0107 ± 0.0010) for cyclo-(d-Met-l-Met) (trans-configuration), cyclo-(d-Met-l-Cys(Me)) (trans-configuration), and cyclo-(Gly-Met); (2) a cyclic radical (S∴O)(+) (g = 2.0088 ± 0.0010) with a two-center three-electron bond (2c-3e) structure between the sulfur atom of the Cys(Me) residue and the oxygen atom of cyclo-(d-Met-l-Cys(Me)) and cyclo-(Gly-Cys(Me)); (3) a cyclic radical (S∴S)(+) (g = 2.013 ± 0.0020) with a two-center three-electron bond structure between the two sulfur atoms of the peptides cyclo-(l-Met-l-Met), cyclo-(l-Met-l-Cys(Me)), and cyclo-(l-Cys(Me)-l-Cys(Me)). In contrast, no indication of any type of cyclic radicals with a two-center three-electron bond between sulfur and nitrogen atoms was found. In addition, the hyperfine coupling constants (HFCCs) were determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.