Abstract

Temperature- and field-dependent 1H-, 19F-, and 79,81Br-NMR measurements together with zero - field 79,81Br-NQR measurements on polycrystalline samples of barlowite, Cu4(OH)6FBr are conducted to study the magnetism and possible structural distortions on a microscopic level. The temperature dependence of the 79,81Br-NMR spin-lattice relaxation rates 1/T1 indicate a phase transition at TN simeq 15 K which is of magnetic origin, but with an unusually weak slowing down of fluctuations below TN. Moreover, 1/T1T scales linear with the bulk susceptibility which indicates persisting spin fluctuations down to 2 K. Quadupolare resonance (NQR) studies reveal a pair of zero-field NQR- lines associated with the two isotopes of Br with the nuclear spins of I = 3/2. Quadrupole coupling constants of vQ ≃ 28.5 MHz and 24.7 MHz for 79Br- and 81Br-nuclei are determined from Br-NMR and the asymmetry parameter of the electric field gradient was estimated to η ≃ 0.2. The Br-NQR lines are consistent with our findings from Br-NMR and they are relatively broad, even above TN. This broadening and the relative large η value suggests a symmetry reduction at the Br- site reflecting the presence of a local distortion in the lattice. Our density-functional calculations show that the displacements of Cu2 atoms located between the kagome planes do not account for this relatively large η. On the other hand, full structural relaxation, including the deformation of kagome planes, leads to a better agreement with the experiment.

Highlights

  • Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliati

  • No shift in the central peak position was observed for the 1H-line, whereas a small shift was found for the 19F-line. Both nuclear magnetic resonance (NMR) lines show a significant broadening below 15 K which is consistent with the magnetic order at 15 K11

  • The static and dynamic magnetism in barlowite is far from being understood and there is a strong demand for other local probes like neutron scattering or spin Muon resonance and for studies on single crystals

Read more

Summary

Introduction

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliati. Temperature- and field-dependent 1H-, 19F-, and 79,81Br-NMR measurements together with zero - field 79,81Br-NQR measurements on polycrystalline samples of barlowite, Cu4(OH)6FBr are conducted to study the magnetism and possible structural distortions on a microscopic level.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.