Abstract

MR-ARFI adds to the rich toolbox of MR imaging methods for guiding focused ultrasound. MRI has exquisite soft tissue contrast for targeting focused ultrasound and a variety of contrast mechanisms for assessing the effect of focused ultrasound. In addition, MR can provide temperature mapping in near-realtime. MR-ARFI is an imaging method that compliments these other capabilities: MR-ARFI can provide a very low temperature rise method to locate the focal spot, calibrate the beam intensity, and potentially evaluate and improve focusing. MR-ARFI typically uses a relatively long ultrasound pulse (1-20 ms) during the application of a magnetic field gradient to encode the displacement of tissue into the phase of the MR image. MR-ARFI is related to elastography, shear-wave imaging, and harmonic motion imaging methods, which evaluate tissue stiffness by evaluation of the ultrasound shear wave that propagates after the ultrasound pulse. However, MR-ARFI is instead visualizing the quasi-static displacement of tissue during the ultrasound pulse, rather than the shear wave after the pulse.

Highlights

  • Background/introduction MR-ARFI adds to the rich toolbox of MR imaging methods for guiding focused ultrasound

  • MR-ARFI is related to elastography, shear-wave imaging, and harmonic motion imaging methods, which evaluate tissue stiffness by evaluation of the ultrasound shear wave that propagates after the ultrasound pulse

  • MR-ARFI is instead visualizing the quasistatic displacement of tissue during the ultrasound pulse, rather than the shear wave after the pulse

Read more

Summary

Introduction

Background/introduction MR-ARFI adds to the rich toolbox of MR imaging methods for guiding focused ultrasound. MR-ARFI is an imaging method that compliments these other capabilities: MRARFI can provide a very low temperature rise method to locate the focal spot, calibrate the beam intensity, and potentially evaluate and improve focusing. MR-ARFI typically uses a relatively long ultrasound pulse (1-20 ms) during the application of a magnetic field gradient to encode the displacement of tissue into the phase of the MR image. MR-ARFI is related to elastography, shear-wave imaging, and harmonic motion imaging methods, which evaluate tissue stiffness by evaluation of the ultrasound shear wave that propagates after the ultrasound pulse. MR-ARFI is instead visualizing the quasistatic displacement of tissue during the ultrasound pulse, rather than the shear wave after the pulse

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.