Abstract

Bulk high-temperature superconductors (HTS) are used as current-carrying elements in various devices: electrical machines, magnetic suspension systems, strong magnetic field sources, etc. Supercurrents decay due to the relaxation of nonequilibrium magnetic structures. This phenomenon, which is known as magnetic flux creep or magnetic relaxation, degrades the characteristics of superconducting devices. A “giant flux creep” is observed in HTS. There is an extensive review on this phenomenon by Yeshurun et al. (1996), but the magnetic relaxation suppression was discussed only briefly in it. An overwhelming majority of studies dealing with applications of HTS also paid little attention to the problem of creep. In this chapter we describe the methods of influence on the relaxation rate both of local characteristics of the magnetic structure (vortex density and vortex density gradient) and averages over the volume of superconductor (magnetic flux, magnetic moment and levitation force). Particular emphasis is placed on the magnetization and the magnetic force whose stability is necessary for the normal operation of the majority of high-current superconducting devices. Magnetic flux creep has its origin in motion vortex (flux lines) out of their pinning sites due to the thermal activation. The creep rate decreases when new or denser pinning sites are introduced into HTS sample. The overview of different techniques for producing pinning sites may be found in the review by Yeshurun et al. (1996). The dramatic decrease in the magnetic relaxation rate is observed if the temperature of the superconductor is reduced (Maley et al., 1990; Sun et al., 1990; Thompson et al., 1991). This effect known as “flux annealing” arises due to the transition of vortex system from the critical state having small activation energy to the subcritical state with relatively large activation energy. The “flux annealing” suppresses flux creep, but does not affect the magnetic structure. The induction gradient, which determines the supercurrent density and the superconductor magnetization, does not change after “annealing”. However, this method is difficult to implement in technological applications. On the contrary, the exposure of ac magnetic fields strongly affects the nonequilibrium vortex configuration. The critical state in superconductor is completely destroyed at the certain amplitude of ac field (Fisher et al., 1997; Willemin et al., 1998). If the amplitude is less than it, the induction gradient is destroyed at the depth of ac field penetration (Fisher et at., 1997; Smolyak et al., 2007), and in the region bordering the penetration region gradient structure experiences strong relaxation which is not related to thermal activation (Brandt & Mikitik, 2003). After switching off ac field the remanent stationary magnetization is much smaller, but

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call