Abstract

Recent growth in the area of single-molecule magnets (SMMs) in general, and single-ion magnets (SIMs) in particular, is due to the potential applications of this class of compounds in high density data storage devices, molecular spintronics and quantum computing devices. Among all the reported SIMs, Dy(III) based symmetry constrained molecules have been achieving the highest barrier of magnetisation reversal (Ueff) and blocking temperature (TB). Apart from Dy(III), SIMs based on two other Ln(III) ions, viz. Er(III) and Tb(III) have also been explored to a considerable extent. However, SIMs formed by other lanthanide ions have remained unexplored to a great extent for various reasons. During the last few years, many successful attempts have however been made to realize SIMs of these less-explored Ln(III) ions, mainly those of Ce(III), Nd(III), Ho(III) and Yb(III) along with Gd(III) and Tm(II/III), with the objective of attaining significant Ueff and TB values through suitably designed ligand field (LF) around the respective prolate or oblate Ln(III) ion. These recent investigations have paved way to a deeper understanding of the relaxation dynamics of these molecules. This review article attempts to summarize the important advances in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.