Abstract

AbstractMagnetic reconnection converts, often explosively, stored magnetic energy to particle energy in space and in the laboratory. Through processes operating on length scales that are tiny, it facilitates energy conversion over dimensions of, in some cases, hundreds of Earth radii. In addition, it is the mechanism behind large current disruptions in fusion machines, and it can explain eruptive behavior in astrophysics. We have known about the importance of magnetic reconnection for quite some time based on space observations. Theory and modeling employed magnetized fluids, a very simplistic description. While successful at modeling the large‐scale consequences of reconnection, it is ill suited to describe the engine itself. This is because, at its heart, magnetic reconnection in space is kinetic, that is, governed by the intricate interaction of charged particles with the electromagnetic fields they create. This complex interaction occurs in very localized regions and involves very short temporal variations. Researching reconnection requires the ability to measure these processes as well as to express them in models vastly more complex than fluid approaches. Until very recently, neither of these capabilities existed. With the advent of NASA's Magnetospheric Multiscale mission and modern modeling advances, this has now changed, and we have now determined its small‐scale structure in exquisite detail. In this paper, we review recent research results to predict what will be achieved in the future. We discuss how reconnection contributes to the evolution of larger‐scale systems, and its societal impacts in the context of threatening space hazards, customarily referred to as “space weather.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.