Abstract

AbstractA (folklore?) conjecture states that no holomorphic modular form $F(\tau )=\sum _{n=1}^{\infty } a_nq^n\in q\mathbb Z[[q]]$ exists, where $q=e^{2\pi i\tau }$ , such that its anti-derivative $\sum _{n=1}^{\infty } a_nq^n/n$ has integral coefficients in the q-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note, we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.