Abstract

ABSTRACT Main-sequence stars and compact objects such as white dwarfs and neutron stars are usually embedded in magnetic fields that strongly deviate from a pure dipole located right at the stellar centre. An off-centred dipole can sometimes better adjust existing data and offer a simple geometric picture to include multipolar fields. However, such configurations are usually to restrictive, limiting multipolar components to strength less than the underlying dipole. In this paper, we consider the most general lowest order multipolar combination given by a dipole and a quadrupole magnetic field association in vacuum. Following the general formalism for multipolar field computations, we derive the full electromagnetic field outside a rotating quadridipole. Exact analytical expressions for the Poynting flux and the electromagnetic kick are given. Such geometry is useful to study the magnetosphere of neutron stars for which more and more compelling observations reveals hints for at least quadridipolar fields. We also show that for sufficiently high quadrupole components at the stellar surface, the electromagnetic kick imprinted to a neutron star can reach thousands of km s−1 for a millisecond period at birth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.