Abstract

Structural and magnetic properties were studied on La 1− x MnO 3± δ nanocrystalline powders exhibiting different La/Mn ratios. These compounds were prepared using a gel combustion method based on a cation solution soaking by acrylamide polymerization. Structural properties were studied both by transmission electron microscopy and X-ray diffraction (XRD). Complete chemical composition analyses were performed by induced coupled plasma spectroscopy and by iodometric titration. Proportions of parasitic phases in samples, as La 2O 3 or Mn 3O 4, and actual compositions of La 1− x MnO 3± δ phases were then determined from refinements of XRD data and sample chemical compositions. As a result, perovskite structure is not any more stable for La/Mn<0.9 as it decomposes into a mixing of La 0.9MnO 3 and of Mn 3O 4 phases, in agreement with results on thermodynamic equilibrium in the La–Mn–O phase diagram. For La/Mn>0.9, a high oxygen excess is observed and leads to consider the creation of vacancies on both lanthanum and manganese sites, whose concentrations are evaluated. Magnetic properties agree well with the proposed structures and sample compositions since for La/Mn<0.9, for which a La 0.9MnO 3 phase is always found, the Curie temperature remains constant and equal to 295 K (the highest temperature never observed before in such series of compositions), while for La/Mn>0.9, there is a formation of Mn vacancies giving rise to a lowering of Curie temperature resulting of a frustration of ferromagnetic interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.