Abstract

Several fine powder samples of ZnxMg1−xFe2O4, 0≤x≤1, were prepared by the supercritical sol-gel (aerogel) process, and were annealed at 500 °C for 2 h. The structure, crystallite size and inversion parameter were determined by x-ray diffraction. The crystallite diameter of the as-prepared powders ranged from 6.5 to 8.5 nm. The minimum size was achieved for the samples with 0.25≤x≤0.50. After annealing the crystallite size increased by an average of 3 nm. The values of the inversion parameters, before and after annealing, reflect roughly the chemical preference of Zn cations to the tetrahedral sites and Mg cations to the octahedral sites of the spinel structure. However, these values indicate that the as-prepared materials were not in the equilibrium state. The magnetic properties were studied by 57Fe Mössbauer spectroscopy over a temperature range of 25 K to room temperature. Taking advantage of their sensitivity to the superparamagnetic behavior induced by the size effects, the Mössbauer spectra were used to determine the blocking temperatures. The calculated values peaked at x=0.50 for both the as-prepared and annealed powders. SQUID magnetometry measurements are currently underway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.