Abstract

Motivated by recent scanning tunnel microscopy (STM) experiments, we present a theoretical study of the electronic and magnetic properties of the Mn-induced acceptor level obtained by substituting a single Ga atom in the (110) surface layer of GaAs or in one of the atoms layers below the surface. We employ a kinetic-exchange tight-binding model in which the relaxation of the (110) surface is taken into account. The acceptor wave function is strongly anisotropic in space and its detailed features depend on the depth of the sublayer in which the Mn atom is located. The local-density-of-states (LDOS) on the (110) surface associated with the acceptor level is more sensitive to the direction of the Mn magnetic moment when the Mn atom is located further below the surface. We show that the total magnetic anisotropy energy of the system is due almost entirely to the dependence of the acceptor level energy on Mn spin orientation, and that this quantity is strongly dependent on the depth of the Mn atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.