Abstract

We predict theoretically that nonmagnetic CdSe nanocrystals may possess macroscopic magnetic moments due to the formation of dangling-bond magnetic polarons (DBMPs). A DBMP is created in optically pumped nanocrystals by dynamic polarization of dangling bond spins (DBSs) at the nanocrystal surface during radiative recombination of the ground state "dark" exciton assisted by a spin-flip of the DBS. The formation of DBMPs suppresses the radiative recombination of the dark exciton and leads to a temperature-dependent contribution to the Stokes shift of the photoluminescence. This model consistently explains the experimentally observed low-temperature photoluminescence features of nonmagnetic CdSe nanocrystals as manifestations of their spin-related magnetic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call