Abstract

The structural, electronic, and magnetic properties of the NiFe2O4 compound are studied using several theoretical methods such as first-principle calculations based on density functional theory (DFT), Monte Carlo simulations, and mean-field theory. The exchange-correlation potential was resolved by generalized gradient approximation (GGA) that underestimates the band gap energy value; therefore, this later needed to be corrected using the GGA + U approximation. The gap energy value (1.10 eV) obtained by the theoretical method is in good agreement with experimental value (0.99 eV). Using ab initio calculations, the exchange-coupling interactions are J1 = 40.665 meV, J2 = 45.382 meV, and J3 = −3.260 meV. Moreover, the semiconductor NiFe2O4 compound exhibits a second-order ferromagnetic-paramagnetic phase transition around TC = 844 K; this value is in good agreement with experimental results. The total magnetization, susceptibility, and specific heat of this compound are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call