Abstract

We studied the magnetic properties of ferromagnetic-semiconductor composites based on nickel and porous-GaN, motivated by the effort to couple magnetic and semiconductor functionality. Nickel-infiltrated and nickel-coated (laminated thin-film) porous GaN structures were fabricated by electrodeposition, and their magnetic properties were subsequently examined collectively, by vibrating sample magnetometry and on the nanoscale, by magnetic force microscopy. We successfully demonstrated the ability to realize nickel infiltrated porous GaN, where the magnetic properties were dominated by the infiltrated material without a measurable surface contribution. We found that the structure and magnetization of electrodeposited porous-GaN/Ni composites depended on GaN degree of porosity and the amount of deposited nickel. The magnetization evolves from a nearly isotropic response in the infiltrated structures, to a shape-anisotropy controlled magnetic thin-film behavior. Furthermore, both infiltrated and thin-film nickel electrodeposited on porous GaN were found to have low (< 0.1%) strain and corresponding low coercivity: < 6.4 and < 2.4 kA/m for infiltrated and thin-film, correspondingly. An unconventional trend of increased remanence at room temperature, compared to cryogenic temperature, was observed in the thin film. The most likely cause for these findings is increased compliance of the porous GaN compared to bulk, allowing strain relaxation at room temperature. These results encourage deeper investigation of magnetic nanostructure property tuning and of magnetic property coupling to GaN and similar materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.