Abstract

The magnetic properties of hexagonal (Mo0.5Mn0.5)2GaC MAX phase synthesized as epitaxial films on MgO (111) substrates with the c-axis perpendicular to the film plane are presented. The analysis of temperature-dependent ferromagnetic resonance (FMR) and magnetometry data reveals a ferro- to paramagnetic phase transition at 220 K. The electrical transport measurements at 5 K show a negative magnetoresistance of 6% in a magnetic field of 9 T. Further analysis confirms the spin-dependent scattering of charge carriers in this layered material. A small perpendicular (c-axis) magnetocrystalline anisotropy energy density (MAE) of 4.5 kJ/m3 at 100 K was found using FMR. Accordingly, (Mo0.5Mn0.5)2GaC behaves similar to the (Cr0.5Mn0.5)2GaC MAX phase as a soft magnetic material. The density functional theory calculations reveal that the sign and the amplitude of the MAE can be very sensitive to (Mo0.5Mn0.5)2GaC lattice parameters, which may explain the measured soft magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.