Abstract

Newly proposed aromatic molecules and graphene fragments are shown to have the high-spin ground state by the first-principles electronic structure calculations. Our strategy to predict magnetic carbon materials is based on our previous conclusion that mono-hydrogenated, di-hydrogenated or mono-fluorinated zigzag edges of honeycomb networks are magnetic. Structural optimization as well as determination of the electronic states was performed for various nanographite ribbons and high-spin molecules, e.g. 1,8,9-di-hydro-anthracene, C 19H 14 and C 14F 13. For hydrogenated molecules and ribbons, the total spin S determined by the LSDA calculation coincides with the value expected from a counting rule for the total spin on a bipartite network. However, S depends on structures of fluorinated nanographite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.