Abstract

ABSTRACTNanocrystalline stoichiometric FeCo powders were prepared by mechanically alloying elemental Fe and Co powders using a high-energy ball mill. The microstructural evolution was studied as a function of milling time and subsequent annealing using X-ray diffractometry and differential scanning calorimetry. The magnetic behavior of the specimens was characterized using a vibrating sample magnetometer and a magnetic force microscope. A reduction in grain size coupled with an increase in coercivity was observed as function of milling time. The smallest grain size of 4 nm, which exhibited a coercivity of 122 Oe and magnetization of 2 T at room temperature, was obtained after 240 h of milling. The reduction in grain size during milling was not accompanied by enhanced soft magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.