Abstract

N-doped graphene with Curie temperature higher than room temperature is a good candidate for nanomagnetic applications. Here we report a kind of N-doped graphene that exhibits ferromagnetic property with high Curie temperature (>600 K). Four graphene samples were prepared through self-propagating high-temperature synthesis (SHS), and the doped nitrogen contents of in the samples were 0 at.%, 2.53 at.%, 9.21 at.% and 11.17 at.%. It has been found that the saturation magnetization and coercive field increase with the increasing of nitrogen contents in the samples. For the sample with the highest nitrogen content, the saturation magnetizations reach 0.282 emu/g at 10 K and 0.148 emu/g at 300 K; the coercive forces reach 544.2 Oe at 10 K and 168.8 Oe at 300 K. The drop of magnetic susceptibility at ~625 K for N-doped graphene is mainly caused by the decomposition of pyrrolic N and pydinic N. Our results suggest that SHS method is an effective and high-throughput method to produce N-doped graphene with high nitrogen concentration and that N-doped graphene produced by SHS method is promising to be a good candidate for nanomagnetic applications.

Highlights

  • Graphene has attracted tremendous attention since its first isolation by Novoselov and Geim in 20041,2

  • It is interesting to find that high room temperature ferromagnetic moment with high Curie temperature (> 700 K) for graphene oxide (GO) is obtained by a simple chemical activation using phosphoric acid followed by heat treatment, while its coercivity is less than 20 Oe6

  • N-doped graphene samples produced by SHS method exhibit both high Curie temperatures and high coercive force

Read more

Summary

Introduction

Graphene has attracted tremendous attention since its first isolation by Novoselov and Geim in 20041,2. The pyrrolic N-doped graphene synthesized through a high-throughput hydrothermal method with 6.02 at.% doping concentration exhibited significant ferromagnetism with a saturation magnetic moment (0.014 emu/g) and a narrow coercivity (181.4 Oe)[5].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.