Abstract
Manganese‐doped tin oxide (SnO2:Mn) thin films were deposited on glass substrates by the sol–gel dip coating technique. The effect on structural, morphological, magnetic, electrical, and optical properties in the films with different Mn concentrations (0–5 mol%) were investigated. X‐ray diffraction patterns (XRD) showed the deterioration of crystallinity with increase in Mn‐doping concentration. Scanning electron microscopy (SEM) studies showed an inhibition of grain growth with an increase in Mn concentration. X ray photoelectron spectroscopy (XPS) revealed the presence of Sn4+ and Mn3+ in SnO2: Mn films. SnO2: Mn films show ferromagnetic and paramagnetic behavior. These SnO2:Mn films acquire n‐type conductivity for 0–3 mol% (SnO2 ‐ Sn0.97Mn0.03O2) ‐doping concentration and p type for 5 mol% Mn‐doping concentration(Sn0.95Mn0.05O2) in SnO2 films. An average transmittance of > 75% (in UV‐Vis region) was observed for all the SnO2:Mn films. Optical band gap energy of SnO2: Mn films were found to vary in the range 3.55 to 3.71 eV with the increase in Mn‐doping concentration. Photoluminescence (PL) spectra of the films exhibited an increase in the emission intensity with increase in Mn‐doping concentration which may be due to structural defects or luminescent centers, such as nanocrystals and defects in the SnO2. Such SnO2:Mn films with structural, magnetic and optical properties can be used as dilute magnetic semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.