Abstract

The magnetic properties of low dimensional ferromagnetic systems have been widely investigated over the past decades, since they present exotic new features that cannot be obtained in bulk materials. Compared to ferromagnets, antiferromagnetic materials constrained in a low dimensional environment have received, by far, much less attention. This field, however, is now attracting a rapidly increasing interest, motivated by the availability of recently developed experimental techniques able to assess the magnetic properties of low dimensional antiferromagnetic systems, and by the fact that there is now a general consensus about the primary role played by the interface magnetic structure in systems where a ferromagnetic material interacts with an antiferromagnetic counterpart, as in the exchange bias effect. The purpose of this review is to give a summary of the recent achievements in the understanding of the magnetic properties of late 3d transition metal antiferromagnetic oxides thin films, interfaces and surfaces. Topics such as domain walls and micromagnetic structure, thin film anisotropy, exchange bias, antiferromagnetic–ferromagnetic coupling will be discussed. The analysis of these items will be carried out with the help of experimental results and theoretical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call