Abstract

The magnetic properties of hematite powders produced by a solid state nucleation-and-growth process are studied as a function of temperature T and applied field H. Independently of the temperature, there exists a soft magnetic contribution that is assigned to the canting of spins at the superficial shell of each particle and is not affected by the Morin transition. At 220<T<TM a magnetic contribution with high coercivity is observed, due to spin–flop in the anti ferromagnetic state and above TM=248 K the weakly ferromagnetic state has a coercivity that ranges from 6 kOe to 4 kOe when raising T up to room temperature. Different sub-grain structures were obtained by means of isochronal and isothermal annealing. Changes in the susceptibility are directly related to the sub-particle size. It is concluded that sub-boundaries are the defects responsible for the high coercivities observed in the weakly ferromagnetic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.