Abstract

Abstract A summary of experimental findings and theoretical modelling of micromagnetic properties of zinc-blende ferromagnetic semiconductor (Ga,Mn)As is presented. It is shown that the Zener p–d model explains quantitatively observed Curie temperatures in compensation free samples and that major strain-related effects are correctly accounted for, including the presence of the magnetization reorientation transition, observed as a function of hole concentration and temperature. It is evidenced that a presence of a small trigonal distortion could account for both the presence and properties of uniaxial in-plane magnetic anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.