Abstract

A polycrystalline sample of Fe2GeMo3N has been synthesized by the reductive nitridation of a mixture of binary oxides in a flow of 10% dihydrogen in dinitrogen. The reaction product has been studied by magnetometry, neutron diffraction and Mossbauer spectroscopy over the temperature range 1.8 ≤ T/K ≤ 700. The electronic structure and magnetic coupling have been modelled by Density Functional Theory (DFT) and Monte Carlo methods. Fe2GeMo3N adopts the cubic η-carbide structure with a = 11.1630(1) A at 300 K. The electrical resistivity was found to be ∼0.9 mΩ cm over the temperature range 80 ≤ T/K ≤ 300. On cooling below 455 K the compound undergoes a transition from a paramagnetic to an antiferromagnetic state. The magnetic unit cell contains an antiferromagnetic arrangement of eight ferromagnetic Fe4 tetrahedra; the ordered atomic magnetic moments, 1.90(4) μB per Fe atom at 1.8 K, align along a direction. DFT predicts an ordered moment of 1.831 μB per Fe. A random phase approximation to the DFT parameterised Heisenberg model yields a Neel temperature of 549 K, whereas the value of 431 K is obtained in the classical limit for spin. Monte Carlo calculations confirm that the experimentally determined magnetic structure is the lowest-energy antiferromagnetic structure, but with a lower Neel temperature of 412 K. These results emphasise the potential of these computational methods in the search for new magnetic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.